Problem 2.23

Find the potential a distance s from an infinitely long straight wire that carries a uniform line charge λ. Compute the gradient of your potential, and check that it yields the correct field.

Solution

An electrostatic field must satisfy $\nabla \times \mathbf{E}=\mathbf{0}$, which implies the existence of a potential function $-V$ that satisfies

$$
\mathbf{E}=\nabla(-V)=-\nabla V .
$$

The minus sign is arbitrary mathematically, but physically it indicates that a positive charge in an electric field moves from high-potential regions to low-potential regions (and vice-versa for a negative charge). To solve for V, integrate both sides along a path between two points in space with position vectors, \mathbf{a} and \mathbf{b}, and use the fundamental theorem for gradients.

$$
\begin{aligned}
\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d \mathbf{l}_{0} & =-\int_{\mathbf{a}}^{\mathbf{b}} \nabla V \cdot d \mathbf{l}_{0} \\
& =-[V(\mathbf{b})-V(\mathbf{a})] \\
& =V(\mathbf{a})-V(\mathbf{b})
\end{aligned}
$$

In this context a is the position vector for the reference point (it cannot be infinity because the wire itself extends to infinity), and \mathbf{b} is the position vector \mathbf{r} for the point we're interested in knowing the electric potential.

$$
\int_{\mathbf{a}}^{\mathbf{r}} \mathbf{E} \cdot d \mathbf{l}_{0}=V(\mathbf{a})-V(\mathbf{r})
$$

According to Problem 2.13, the electric field around a uniformly charged straight wire is

$$
\mathbf{E}=\frac{\lambda}{2 \pi \epsilon_{0} s} \hat{\mathbf{s}} .
$$

Since the electric field is radially symmetric, the path taken from a to \mathbf{r} is a radial one and parameterized by s_{0}, where $s \leq s_{0} \leq a$.

$$
\int_{a}^{s} \mathbf{E}\left(s_{0}\right) \cdot d \mathbf{s}_{0}=V(a)-V(s)
$$

Solve for the potential difference $V(s)-V(a)$.

$$
\begin{aligned}
V(s)-V(a) & =-\int_{a}^{s} \mathbf{E}\left(s_{0}\right) \cdot d \mathbf{s}_{0} \\
& =\int_{s}^{a}\left[E\left(s_{0}\right) \hat{\mathbf{s}}_{0}\right] \cdot\left(\hat{\mathbf{s}}_{0} d s_{0}\right) \\
& =\int_{s}^{a} E\left(s_{0}\right) d s_{0} \\
& =\int_{s}^{a} \frac{\lambda}{2 \pi \epsilon_{0} s_{0}} d s_{0}
\end{aligned}
$$

Evaluate the integral.

$$
\begin{aligned}
V(s)-V(a) & =\frac{\lambda}{2 \pi \epsilon_{0}} \int_{s}^{a} \frac{d s_{0}}{s_{0}} \\
& =\left.\frac{\lambda}{2 \pi \epsilon_{0}} \ln s_{0}\right|_{s} ^{a} \\
& =\frac{\lambda}{2 \pi \epsilon_{0}}(\ln a-\ln s)
\end{aligned}
$$

Therefore,

$$
V(s)-V(a)=\frac{\lambda}{2 \pi \epsilon_{0}} \ln \frac{a}{s} .
$$

In cylindrical coordinates

$$
\begin{aligned}
\nabla V & =\frac{\partial V}{\partial s} \hat{\mathbf{s}}+\frac{1}{s} \overbrace{\frac{\partial V}{\partial \phi}}^{=0} \hat{\boldsymbol{\phi}}+\overbrace{\frac{\partial V}{\partial z}}^{=0} \hat{\mathbf{z}} \\
& =\frac{d V}{d s} \hat{\mathbf{s}},
\end{aligned}
$$

so differentiate both sides of the potential difference with respect to s.

$$
\begin{aligned}
\frac{d}{d s}[V(s)-V(a)] & =\frac{d}{d s}\left(\frac{\lambda}{2 \pi \epsilon_{0}} \ln \frac{a}{s}\right) \\
\frac{d}{d s}[V(s)]-\underbrace{\frac{d}{d s}[V(a)]}_{=0} & =\frac{\lambda}{2 \pi \epsilon_{0}} \frac{d}{d s}\left(\ln \frac{a}{s}\right) \\
\frac{d V}{d s} & =\frac{\lambda}{2 \pi \epsilon_{0}} \frac{d}{d s}(\ln a-\ln s) \\
& =\frac{\lambda}{2 \pi \epsilon_{0}}\left(0-\frac{1}{s}\right) \\
& =-\frac{\lambda}{2 \pi \epsilon_{0} s}
\end{aligned}
$$

So

$$
\nabla V=-\frac{\lambda}{2 \pi \epsilon_{0} s} \hat{\mathbf{s}}=-\mathbf{E}
$$

as expected.

